翻訳と辞書
Words near each other
・ Flight Deck (disambiguation)
・ Flight deck cruiser
・ Flight Deck Névé
・ Flight Delay Compensation Regulation
・ Flight Design
・ Flight Design Axxess
・ Flight Design C4
・ Flight Design CT
・ Flight Design Exxtacy
・ Flight Design MC
・ Flight director
・ Flight director (aeronautics)
・ Flight dispatcher
・ Flight Distance (hip hop group)
・ Flight distance record
Flight dynamics
・ Flight dynamics (fixed-wing aircraft)
・ Flight dynamics (spacecraft)
・ Flight Dynamics Flightsail
・ Flight Dynamics Flightsail VII
・ Flight endurance record
・ Flight engineer
・ Flight Engineer Badge
・ Flight envelope
・ Flight envelope protection
・ Flight Express
・ Flight Express, Inc.
・ Flight Facilities
・ Flight feather
・ Flight for Freedom


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Flight dynamics : ウィキペディア英語版
Flight dynamics

Flight dynamics is the study of the performance, stability, and control of vehicles flying through the air or in outer space.〔
〕 It is concerned with how forces acting on the vehicle influence its speed and attitude with respect to time.
In fixed-wing aircraft, the changing orientation of the vehicle with respect to the local air flow is represented by two critical parameters, angle of attack ("alpha") and angle of sideslip ("beta"). These angles describe the vector direction of airspeed, important because it is the principal source of modulations in the aerodynamic forces and moments applied to the aircraft.
Spacecraft flight dynamics involve three forces: propulsive (rocket engine), gravitational, and lift and drag (when traveling through the earths or any other celestial atmosphere).〔Depending on the vehicle's mass distribution, the effects of gravitational force may also be affected by attitude (and vice versa), but to a much lesser extent.〕 Because aerodynamic forces involved with spacecraft flight are very small, this leaves gravity as the dominant force.
Aircraft and spacecraft share a critical interest in their orientation with respect to the earth horizon and heading, and this is represented by another set of angles,〔http://answersforpilots.com/116/how-aeroplane-change-their-direction〕 "yaw," "pitch" and "roll" which angles match their colloquial meaning, but also have formal definition as an Euler sequence.〔Orientation (geometry)#Mathematical representations〕 These angles are the product of the rotational equations of motion, where orientation responds to torque, just as the velocity of a vehicle responds to forces. For all flight vehicles, these two sets of dynamics, rotational and translational, operate simultaneously and in a coupled fashion to evolve the vehicle's state (orientation and velocity) trajectory.
==Aircraft==

(詳細はaircraft.
Flight dynamics is the science of air-vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of mass, known as ''roll'', ''pitch'' and ''yaw''〔http://answersforpilots.com/116/how-aeroplane-change-their-direction〕 (quite different from their use as Tait-Bryan angles).
Aircraft engineers develop control systems for a vehicle's orientation (attitude) about its center of mass. The control systems include actuators, which exert forces in various directions, and generate rotational forces or moments about the center of gravity of the aircraft, and thus rotate the aircraft in pitch, roll, or yaw. For example, a pitching moment is a vertical force applied at a distance forward or aft from the center of gravity of the aircraft, causing the aircraft to pitch up or down.
Roll, pitch and yaw refer, in this context, to rotations about the respective axes starting from a defined equilibrium state. The equilibrium roll angle is known as wings level or zero bank angle, equivalent to a level heeling angle on a ship. Yaw is known as "heading".
A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight. An aircraft is usually streamlined from nose to tail to reduce drag making it typically advantageous to keep the sideslip angle near zero, though there are instances when an aircraft may be deliberately "sideslipped" for example a slip in a fixed-wing aircraft.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Flight dynamics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.